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Enantiomerization and automerization pathways are analyzed quantitatively using the
continuous chirality measures methodology. The analysis gives rise to a number of new
concepts and new descriptive tools, including isochirality, chirality maps, phase maps of
nearest achirality and non-handed chirality. These allow one to classify enantiomerization
processes into chiral, achiral, isochiral and non-handed categories.

1. Background

In a recent series of papers [19–21] we advanced the notion that symmetry is a
measurable structural quantity; we developed a methodology for the measurement of
the degree of symmetry towards any symmetry group, including the important family of
achiral groups [19]; and we demonstrated its applicability in a number of symmetry and
chirality related issues [2,18]. These include the application of the symmetry measure
as an order parameter in small clusters [3], an investigation of the chirality properties
of the cyclic trimer of water and of its enantiomerization pathways [14], an analysis
of the correlation between centrosymmetricity and hyperpolarizability [6], an analysis
of the chirality of large random objects [1,7], an analysis of the enantiomerization
properties of chiral fullerenes [13], implementation of continuous symmetry measures
and continuous chirality measures in biomedical quantitative structure activity relations
(QSAR) [8], and an analysis of the macroscopic chirality of tartrate crystals [9]. Major
contribautions to the issue of measurement of chirality have been made by several
research groups and a comprehensive listing of references can be found in [2,19].

In this paper we use the continuous chirality approach to explore in detail the
properties of enantiomerization pathways and, in particular, of chiral pathways. Such
pathways, in which all intermediate structures are chiral, are known and documented
[10–12,15–17]. As is reported here, the quantitative exploration of it, which becomes
possible with the chirality measure, allows one to define several novel concepts and
descriptive tools, and to classify enantiomerization routes.

The specific example that accompanies our conceptual study is two-dimensional
(2D) mainly for sake clarity of presentation; however, all the major conclusions reached
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below hold for 3D-structures as well. Since the minimal number of vertices in 2D
which allows chiral enantiomerization pathways is 4 [10,12], we selected to study the
chirality properties of the simplest linearly connected 4 vertices structure in 2D, namely,
a “butane-like” skeleton (figure 1(a)) (referred to in this report in short as “butane”). In
order to get the entire picture of enantiomerization properties, full rotation is allowed
around the two axes, as shown in figure 1(a). This object and its freedom of rotation
are, of course, theoretical, but its simplicity allows one to present and discuss in
a convenient way many of the properties of chirality in general. All chiral butane
structures belong either to the 2D-C1 point group or, in the case of equal P1P2 and
P3P4 lengths, to the 2D-C2 (=2D-inversion) point group, where Cn is a point-axis of
rotation within the plane. The achiral structures are either linear or cisoidal, having
2D-Cs symmetry (figure 1 (b) and (c)) or, for the co-linear equal P1P2 and P3P4

lengths case (figure 1(d)), a 2D-D2 symmetry. Finally, in declaring a structure chiral
or not, we always retain the original connectivity, and therefore half-folded structures
like figure 1(e) are chiral as well.

The continuous chirality measure (CCM) method we employ here is a special
case of the more general continuous symmetry measures (CSM) approach. It has been
described in detail in previous publications [2,18–21], and so we repeat here briefly
only some elements needed for this report. Evaluating the chirality content of an object
amounts by this approach to finding the minimal distance that the vertices of the object
have to be shifted in order to attain achirality. It consists of three steps: normalization
of the object size; applying a symmetry transform for finding the nearest achiral object;
and calculation of the distance to the original structure, namely, the symmetry value.

The normalization is performed in order to make the CCM invariant to size and it
is accomplished by division of all vertex distances of the object by the farthest distance
from the center of mass. In center-of-mass coordinates, the locations of the vertices
are

Pi =
P

original
i

P farthest . (1)

In section 2.4 we propose an improved normalization procedure.
The symmetry transform is the heart of the CCM. It is based on dividing the ver-

tices into matching (permutable) subgroups of vertices, folding the original normalized
vertices {Pi} within each of the subgroups, averaging the folded cluster and unfolding
it into the normalized symmetric shape, {P̂i}. The algorithm is demonstrated for Cs
in figure 2 (for details, see [19–21]). Once the set {P̂i} is obtained, the CCM value
S′′(G) is calculated according to its definition:

S′′(G) =
1
n

n∑
i=1

∣∣Pi − P̂i∣∣2, (2)

where G is an achiral symmetry point group and n is the number of vertices. This
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(a) (b)

(c) (d)

(e)

Figure 1. (a) The enantiomerizations are carried out on a two-dimensional (2D) chiral “butane-like”
structure, by rotating the arms (vertices P1 and P4; the lengths need not be equal) around the axes P2

and P3. Full rotatory motion as well as vertices overlap are allowed. Achiral shapes, which are also the
nearest achiral structures to the chiral ones (see text for definition), are shown in (b)–(d). For the case of
unequal bond lengths, the computed nearest achiral structures are those with all vertices collinear, either
spread out or folded, such as in (b); or cisoidal structures (c) with Cs symmetry. For the case of equal
P1P2 and P3P4 lengths including the all-equal bond lengths, there is an additional type of nearest achiral
structure: a linear butane with 2D-D2 symmetry (d); shown are the two mirror lines and the C2 axis. The
vertices permutations (see text) for the three cases are: (b) (1)(2)(3)(4) – i.e., all vertices are reflected
into themselves; (c) the pairs (1 4)(2 3) – i.e., P1 is reflected into P4, etc; and both permutations for (d).

The half-folded structure (e) is chiral, because its original connectivity is retained.

procedure is repeated for every possible permutation (match) of vertices and for every
(relevant) achiral point group, and the minimal value is chosen:

S′(G) = min
[
S′′(G)

]
(over all the permutations) (3)

and

S′(chirality) = min
[
S′(Gimproper)

]
. (4)
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(a) (b)

(c) (d)

Figure 2. The folding–unfolding method for evalution of the degree of chirality, demonstrated on a 2D
butane. (a) The structure is placed so that its center of mass coincides with the origin, and its size
normalized to unit size so that the maximal distance from the center of mass to the farthest point is 1.
The points are paired (e.g., P1P4 and P2P3). The symmetry element, σ, is placed at the origin, and its
optimal inclination (the one leading to minimal S(G)) is calculated analytically [19]. (b) The points are
folded by applying the inverse symmetry operation on them: e−1 ≡ e is operated on points P1 and P2;
σ−1 ≡ σ operates on P3 and on P4, producing the folded set of points, {P̃i}. (c) This set is averaged
according to the permutation (P̃1 is averaged with P̃4 and P̃2 is averaged with P̃3), resulting in P̂1 and
P̂2. (d) The averaged set is unfolded by operating the symmetry operations on the points, yielding the
symmetrized set {P̂i}. The chirality content is represented by the distance (squared) of (a) from (d),
calculated from equation (6). This procedure is repeated over all possible permutations and the minimal

value is selected.

In 2D, the only symmetry groups of relevance to chirality are those containing a mirror
line Cs and so in 2D the CCM is

S′(chirality) = S′(Cs). (5)

The minimal chirality value, S′, is zero for an achiral structure (and therefore, strictly
speaking, S′ measures the distance from achirality). The maximal value of S′(G) is
1 due to the normalization procedure, and it is obtained for some of the cases where
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the nearest symmetric object is the center point [20,21]. For 2D-chirality it never
reaches 1, because the distance to the mirror line is always smaller than the distance
to a center point. Finally, we found it convenient to expand the scale by a factor of
100,

S(G) = 100 · S′(G), (6)

and these are the values reported here.

2. Results and discussion

2.1. Achiral versus chiral enantiomerization and automerization routes: Qualitative
aspects

We first comment on the general butane structure, in which the three bond seg-
ments are of different length (representing, for instance, a C–C central bond with two
different substituents on it). Allowing free rotations about the two axes (P2 and P3 in
figure 1(a)), there are many possible enantiomerization routes, some achiral but mostly
chiral. In general, as mentioned above, achirality is possible here only for co-linear
structures, due to either full spreading (α1 = α2 = 180◦), full folding (0◦ = 360◦ for
both angles) or a combination of both spreading and folding. A chiral enantiomeriza-
tion pathway is therefore any route which does not pass through co-linearity.

We return to the generalized butane in section 2.3, and at the moment concentrate
on a butane structure of equal segment lengths, with α1 = α2 = 109.5◦, which, being
a trans structure of C2 symmetry, is chiral in 2D. Its enantiomer has bond angles of
360 − α1 = 360 − α2 (figure 3, structures I and I ). Achirality is achieved here, as
in the generalized butane, when all vertices are co-linear. An achiral route passing
through co-linearity is shown in figure 3(a). The route leading to it is a synchronous
conrotatory motion of vertices P1 and P4. The higher symmetry of the C2 butane
allows additional achiral pathways: any pathway passing through an equal angles
cis structure (α1 = 360 − α2, including, in fact, co-linearity) is an achiral pathway
(figure 3(b)). Notice that all conrotatory pathways are achiral because these must pass
through co-linearity or through a cis form. Disrotatory motion can lead, however, to
both achiral and chiral pathways: chiral enantiomerization pathways are achieved here
only by non-synchronous motion in which one of the end vertices passes over the 2–3
bond (figure 3 (c) and (d)).

The same arguments hold for a third process, namely, the automerization reaction.
Here, an enantiomer moves along a pathway which returns into its original structure
and handedness. Examples are figure 3 (e) and (f) – chiral routes – and figure 3(g)
which is an achiral one.

Pathways (g) and (h) are of special interest: in (g) the chirality value remains
constant throughout the process; in (h) it is not trivial to assign handedness to the
structures along it. We return to these two special paths in sections 2.2 and 2.3.
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Figure 3. Top: (a)–(d) are enantiomerization pathways for a 2D butane skeleton of equal bond-lengths,
which transform the structure I to its enantiomer, I . Representative structures along the pathways are
shown. Path (a) is achiral and involves synchronous conrotatory clockwise motion of the arms. Path (b)
is achiral as well, and involves stepwise conrotatory motion. (c) and (d) follow a non-synchronous
disrotatory motion, leading to chiral pathways. Center: (e)–(g) are automerization pathways bringing
I back to itself. Path (e) is an achiral automerization and (g) and (f) are chiral ones. Path (g) (see
section 2.2) represents an isochiral automerization route: the chirality value is constant throughout the
process. Path (h) (see section 2.3) is an automerization of non-handed chirality. Bottom: the routes, from
which the structures on top were taken, shown on an angles map. Note that the start and end points are
the dots at 109.5◦ and that some routes cross the borders of the map and continue on the opposite side.
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2.2. Quantitative representation of enantiomerization and automerization processes

The CCM methodology allows one to upgrade the qualitative description of sec-
tion 2.1 to a quantitative level. Figure 4 shows the various routes described in figure 3
as S versus reaction coordinate graphs. (The reaction coordinate is the actual route,
shown in figure 3 (bottom), divided into equal segments.) It is seen that curves a, b,
e and h pass through an achiral structure – the chirality value of these paths drops
to zero at some point along the curve. The achiral entities for these paths are linear,
cisoidal cisoidal and linear, respectively (figure 1). Curves c, d (enantiomerizations)
and f, g (automerizations) represent chiral pathways, i.e., their S values never drop to
zero. Note (figure 4) that the CCM approach makes it possible to identify the most
chiral structure in each of the routes (one of which is shown in the insert for curve f);
and makes it possible to evaluate how much more (or less) chiral is any structure along
the pathway, than the starting structure (e.g., the structure in the insert has a chirality
value which is 4.85 times higher than the value of the starting shape).

The chiral paths give rise to interesting questions regarding handedness: where
along the path does the handedness change? Are the points of change in handedness,
which must be chiral themselves, unique in any way? What is the handedness of
these chiral structures? We discuss these conceptual questions in a separate report and
briefly in section 2.3. As mentioned above, another interesting pathway in figure 4 is
represented by curve g. The chirality value throughout this process is constant – it
is an isochiral pathway (figure 3(g)). The concept of isochirality, namely, structures
possessing equal chirality values, is made possible, again, only by the use of quan-
titative measurement of chirality. Two identical structures or a pair of enantiomers
are trivially isochiral, but also completely unrelated structures may be isochiral. In
fact, if one draws a line in figure 4 which is parallel to the reaction coordinate, all the
structures represented by the points where other graphs intersect it are isochiral. An
example for such a line is curve g itself, which intersects some of the other curves
and has therefore isochiral points with these curves. Other crossing points of other
curves in figure 4 represent isochiral structures as well. In order to identify which
of the crossing points represent different structures and which are trivially isochiral,
it is necessary to analyse the angles maps (figure 3 (bottom)) or the chirality maps
described in the next section, where we return to this point.

2.3. Chirality maps

So far we dealt with enantiomerization routes between mirror images of a specific
butane structure of equal bond lengths and with α1 = α2 = 109.5◦. However, isomer-
ization pathways are possible between structures of any pair of angles, including, of
course, isomerizations between butane structures of unequal angles. The CCM method-
ology allows one to present the chirality values of all possible structures, either in the
form of chirality equicontour maps (figure 5(a)), or as a surface in a 3D-representation,
shown in figure 5(b). As can be seen, the chirality map is quite rich in features such
as valleys, ridges, saddles and so on. The highest points on this map, i.e., the most
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Figure 4. Variation of the chirality value throughout the reaction pathways shown in figure 3. Top: full
picture. Bottom: enlarged detail. The reaction coordinate represents the trajectories in figure 3 (bottom)
reduced into a line. Curves a and b are enantiomerization processes, passing through an achiral structure
(chirality value zero), and so does the automerization curve e. Curves c and d represent chiral pathways
in which the structure never becomes achiral, i.e., the S value never drops to zero, as is the case for the
automerization process f. Insert: the most chiral structure in the curve following route f has a chirality
value of 20. Line g represents an isochiral process of constant S value. The points of intersection
between different routes represent isochiral structures. For section 2.3: curve h shows the S variations
along a non-handed route (following the dynamic rotational handedness definition in [5]). The achiral
point (S(Cs) = 0) is trivially non-handed, yet all other points on this route represent chiral non-handed

structures.
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(a)

(b)

Figure 5. Chirality maps for butane structure of equal-bond lengths. The two ordinates are the angles
defined in figure 1. (a) 2D-representation: contours of equi-chirality values. (b) 3D-representation of (a).
Any two points (structures) on the map are connected by any of an infinite number of isomerization

trajectories, the enantiomerizations of which are classified in the text.
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chiral butane structures, are at (5,90), (90,5), (270,355) and (355,270) degrees. Their
chirality value is 20.4. Chirality maps of butane structures with unequal bond lengths
are discussed later in this section.

2.3.1. Classification of enantiomerization routes
The chirality map is a convenient tool for the full representation of the various

enantiomerization routes, few examples of which were given in figure 3. In fact, any
two structures on the chirality map are connected by an infinite number of isomerization
routes. These can be classified as follows:

Achiral isomerization routes. An example of an isomerization route which is achiral
in all its points, is the “valley” along the α1 + α2 = 360◦ diagonal (figure 5) which
corresponds to the Cs symmetric cisoidal butane structures. All enantiomerization
routes which cross this valley or pass along (portions of) it, or are tangents to it, are
achiral routes. The same is of course true for automerization routes and in fact for any
isomerization (namely, a reaction where the angles of starting structure and the angles
of the end structure, are not equal). Another family of achiral routes are those which
pass through the points α1 = 0◦, α2 = 180◦ or α1 = 180◦, α2 = 0◦, representing
linear structures (the dots on the frame in figure 5).

Chiral routes. All routes which avoid the achiral diagonal valley (α1+α2 = 360◦) and
the linear structures at the dots, are chiral. This means, as explained in section 2.1, that
chiral enantiomerization pathways must pass through either of the αi = 0◦ (i = 1, 2)
angles at least once; otherwise they have to pass the cisoidal achiral diagonal valley.
(See figure 3 for some examples.)

Isochiral routes. We defined above isochirality as the property of having the same
chirality value. The equicontours in figure 5(a) are, by definition, isochiral isomeriza-
tion routes, along which the amount of chirality does not change. An example of how
structures on such routes actually look like, was shown in figure 4 (curve g). As al-
ready discussed in our study of the enantiomerization of the water trimer [14], isochiral
routes may be of particular interest: in that example, the energetically favored route
is nearly isochiral. Closed loop isochiral contours represent isochiral automerizations.
Completely achiral routes are isochiral routes with S = 0 all along the pathway, which,
in our case, is the α1 + α2 = 360◦ diagonal.

Different reaction pathways may cross each other in the chirality map (figure 3
(bottom)) and the points of crossing must, by definition, be isochiral (for instance,
routes b and c). Obviously, isochirality at the points of crossing is of identical struc-
tures. However, reaction pathways, either crossing or not, may share isochiral struc-
tures which are located separately anywhere on the pathways. By and large, in such
cases isochirality will be of different structures (see, for example, routes g and c).
It should be noted again that the crossing of the curves in figure 4 indeed represent
isochiral structures, but in order to identify which type it is, one has to resort to
chirality maps (figures 3 and 5).
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Non-handed structures and routes. An infinite number of chiral enantiomerization
pathways exists for the butane structure (figure 5). Within each of these paths, the
molecule changes its handedness without ever becoming achiral. This lead us to the
notion that along the enantiomerization pathway, the structure must pass through a
non-handed shape [14,21] – it is as left handed as it is right handed – yet still chiral.
The specific shape of such non-handed structures depends on the handedness definition
employed. For instance, the chiral half-folded shape, figure 1(e), is non-handed under
the handedness definition suggested in [5]. The handedness assignment employed there
is a dynamic rotational one: a chiral object (like figure 1(a)) is rotated in a viscous
medium and, because of its chirality, the rotation creates more friction in the clockwise
or in the counterclockwise direction. The difference between the two “friction” values
is not only an additional measure of chirality but it also allows one to attach a sign
to it and therefore also handedness. However, the chiral butane of figure 1(e) creates
the same amount of friction in both directions of rotation, and therefore is non-handed
under this handedness convention.1 A trail of this type of non-handedness corresponds
to α1 = 0◦, α2 6= 0◦, α2 6= 180◦, or α2 = 0◦, α1 6= 0◦, α1 6= 180◦ (the frame in
figure 3). The phenomenon of non-handedness is conceptually interesting – we shall
devote a separate report to its analysis.

2.3.2. The symmetry of chirality maps
Another telltale feature of the chirality maps is their symmetry. For the equal

segments butane described in figures 3–5, the symmetry of the map (figure 5(a)) is
2D-D2 (C2v in 3D). It is dictated by the symmetry of the linear structure at the middle
point of the map (α1 = α2 = 180◦) which also belongs to the 2D-D2 symmetry point
group. The reasoning behind the link between the symmetry of the map and the middle
structure is that for every change in the shape of the latter, converting it to a structure
anywhere else in the map, there are three other symmetry equivalent but re-positioned
structures which retain the D2 symmetry. Thus, a change of +∆α1 imposed on the
linear center achiral structure, is equivalent to −∆α2 and enantiomeric to −∆α1 and
+∆α2.

Chirality maps become more complex in features when one introduces different
bond lengths (figure 6). However, the symmetry of the maps continues to obey the
rule we just described, namely that the symmetry of full-spread collinear structure at
the middle point dictates the symmetry of the whole map. In its most general form
(all arms unequal to each other), the map itself is chiral, having a C2 symmetry (2D
inversion). To have this chiral symmetry, it suffices in fact to have unequal P1P2 and
P3P4 bond lengths because the full spread structure is Cs symmetric. For instance,
figure 6(a) shows the map for bond lengths ratio of 1 : 1 : 2. Its chiral C2 symmetry is
lower than the D2 we encountered in figure 5(a), due to the lower symmetry of the
center-point linear structure (α1 = α2 = 180◦), namely, Cs (Cs and C2 are isomorphic

1 Thus, this method, although convenient and applicable to most structures, is not devoid of the problem
of not identifying all chiral structures as such.
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(a)

(b)

Figure 6. Chirality maps of butane stuctures with unequal bond-lengths. The bond-length ratios are:
(a) 1 : 1 : 2; (b) 2 : 1 : 2; (c) 1 : 2 : 1.
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(c)

Figure 6. (Continued.)

point groups; the map assumes a Cs symmetry, if one of the axes is reversed). As
explained earlier, any bent by +∆α1 has only one enantiomeric equivalent of −∆α1.
The generalized chirality map (figure 6(a)) has only a few achiral points at α1 = α2 =
180◦, α1 = α2 = 0◦, α1 = 0, α2 = 180◦ and at α1 = 180, α2 = 0◦, where the butane
structure has a 2D-Cs symmetry.

The 2D-D2 map symmetry encountered for the equal bond-lengths butane, is
in fact obtained for all butanes of segment ratio a : b : a (figure 6 (b) and (c)) for
the same reasoning presented above. However, other features, such as the elevation,
curvature and location of the non-differential lines (section 2.4 below), change. The
chirality values here are lower than those of the equal bond length structure. The
reason for it is that the longer the P2P3 bond is relative to the other two, the more
the skeleton approaches an (achiral) line. Similarly, the shorter this bond becomes, the
more the structure resembles a line for α1 +α2 < 180◦ and an achiral V structure for
α1 + α2 > 180◦. It turns out therefore that the equal lengths butane gives rise to the
highest chirality values. The α1 + α2 = 360◦ diagonal and the α1 = 0, α2 = 180◦

and α1 = 180, α2 = 0◦ dots are achiral in all (a) : (b) : (a) butanes.
Finally, we note that the symmetry of the center point structure must dictate

not only the symmetry of the chirality map but the symmetry of all maps of phys-
ical properties which are invariant to point and space symmetry operations (such as
energy).
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2.4. Non-differential points: Size normalization and “phase” maps of achirality

2.4.1. Size normalization
The use of S(G) as a reaction coordinate may reveal non-differential points for

which there are two sources. The first is due to the size normalization procedure. Our
normalization factor has been the distance between the center of mass and the farthest
point of the object. During a dynamic process, this vector may flip from one vertex to
another, causing non-differentiability of the symmetry map. This type of discontinuity
is technical, and can be removed without tampering with the essentials of the CSM
and CCM algorithms. In order to achieve it we apply another normalization procedure,
which has been commonly used as a shape-size normalization [4]: rather than dividing
the points of the object by the farthest vertex distance, one divides it by root mean
square (RMS) length of all the vectors in center of mass coordinates:

Pi =
P

original
i

RMS
, (7)

where

RMS =

√∑n
i=1 ‖P

original
i ‖2

n
. (8)

This normalization factor is smaller than the farthest vector normalization, because it
weighs all distances, not only the longest. As a consequence, the chirality values in the
RMS normalization are higher than in the farthest vertex method, although, as seen in
figure 7 for the equal bond-lengths butane (compare with figure 5(a)), the relative value
changes and most of the general trends and features within the paths, are preserved.2

An example for the removal of discontinuity by changing the normalization procedure
is shown in figure 8, in which figure 5(a) is reproduced. The diagonals (figure 8)
divide the map into four sections of normalization behaviour: Across the α1 = α2

diagonal there is a flip between P1 and P4 as farthest vertices, and it is therefore a
non-differentiable line in the map. This is also true for the other diagonal, however,
this line links smoothly with its surroundings. The RMS normalization is devoid of
this problem, and the α1 = α2 line links smoothly with its surroundings (figure 7,
α1 = α2 diagonal not shown).

2 In addition to solving the problem of non-differentiability, the RMS normalization has another advantage:
using this method, if an object collapses into a single point after symmetrization, its symmetry value is
100, since

S(G) =
100
∑n

i=1
‖P original

i − 0‖2(
n

√(∑n

i=1
‖P original

i ‖2
)
/n

)2
=

100n
∑n

i=1
‖P original

i ‖2

n
∑n

i=1
‖P original

i ‖2
= 100.

This makes the CSM intuitive, unlike the value offered by the farthest vector normalization, the value
in the latter method being S(G) = 100

∑n

i=1
‖P original

i ‖2/(nP farthest). In this normalization method the
value becomes 100 only if a perfect polygon collapses into a single point.
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Figure 7. The effect of size normalization by the RMS method (all bonds equal). Compare with figure 5(a)
where the normalization base used is the distance between the farthest vertex and the center of mass (see

text).

2.4.2. Phase map of nearest achirality
The second source of non-differentiability is inherent to the search for the closest

symmetric structure. If there are two or more different nearest types of shape for achi-
rality, then the nearest achiral shape may jump with respect to a gradually changing
chiral structure. This is in fact a jump of the vertices permutation during a dynamic
process, namely, a change in the match of vertices that are reflected into each other in
the nearest achiral structure. The change of the closest achiral structure occurs along
the crossing line of two chirality value hypersurfaces, each belonging to a different
achiral structure. A pathway leading from one hypersurface to the other is therefore
non-differentiable at the point of passing the crossing line of these surfaces. This
non-differentiability can be removed, if the restriction for nearest achirality is replaced
with a restriction for a specific nearest achiral shape. This is a possibility we have
yet to explore, although it gives up a central feature of the definition of the symmetry
measure, namely that S(G) is minimal. Here we make use of the permutation changes
in the following way:

For butane there are, as we have already seen, two types of nearest achiral
structures: a cisoidal one (permutation (1 4)(2 3) – figure 1(b)) and a linear one (per-
mutation (1)(2)(3)(4) – figure 1(d)). These different nearest achiral shapes allow one
to present and explore a corresponding map of nearest achirality. This map, which
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Figure 8. A “phase map” of the closest achiral structures of equal bond-lengths laid upon figure 5(a). The
gray areas represent chiral structures whose nearest achirality is linear. The α1 = α2 diagonal represent
structures that collapse after symmetrization to full spread (D2) linear butanes. The border line between
the “phases” is a non-differentiable ridge on the chirality map. The surface in figure 5(b) is the minimum
of two surfaces – one corresponds to the distance to an achiral cisoidal structure and the other to the
distance to a collinear one – their location is shown here. The diagonals divide the map into four equal
segments of normalization in the farthest vertex method. At the top and bottom quarters, P4 is farther

from the center of mass than P1. At the left and right parts, P1 is farther.

resembles a “phase map” (figure 8), is laid upon the chirality contour map in fig-
ure 5(a) to show the relation between the two presentations. Because it is an equal
segment butane, there are three “phases” in this map: the shaded zones which cor-
respond to a full spread–full fold (Cs linear closest achiral structure); the diagonal
line α1 = α2, which corresponds to a full spread–full spread or a full folded–full
folded (D2) linear butane; and the non-shaded zones, in which the nearest achiral
shapes are cisoidal structures (Cs). This presentation shows that the 3D surface
(figure 5(b)) is indeed an interwoven blanket of two surfaces, each belonging to a
different nearest achiral type of structure. Indicating the crossing of two chirality
surfaces are the boundary lines around the linear-achirality islands (figure 8), which
are therefore non-differentiable. However, the structures represented by the α1 = α2

diagonal carry the two perpendicular mirror lines so they possess both the permutation
of the linear structures ((1)(2)(3)(4)) and that of the cisoid butane ((1 4)(2 3)). As
a consequence, the diagonal is a smooth zone on the RMS normalization chirality
map.
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Finally, note that the symmetry of the phase map of nearest achirality is that
of the chirality map itself; and that both normalization methods have the same phase
maps of nearest achirality, since a division by a constant does not change the nature
of the nearest achirality of an object.
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